Custom Columns
You can add custom columns to your dataset to store additional information that doesn’t fit into the default golden fields. To add a custom column:
- Click the Add Column button in the Dataset Editor
- Enter a unique name for your column (it cannot match any default field names like “Input” or “Actual Output”)
To use data stored in custom columns, simply pull your dataset and access the custom_column_key_values
field of a golden:
from deepeval.dataset import EvaluationDataset
dataset = EvaluationDataset()
dataset.pull(alias="your alias")
# `custom_column_key_values` is a Dict[str, str]
print(dataset.goldens[0].custom_column_key_values)
Note that the names of your custom column must not clash with the names of the default ones.
The additional_metadata
field in a golden can often serve as an alternative
to custom columns for storing metadata. This field accepts any dictionary of
values, offering flexibility while custom columns provide more structure and
type safety.
Last updated on