Skip to Content
Confident AI is free to try . No credit card required.

LangGraph

LangGraph is a framework for building reactive, multi-agent systems.

Quickstart

Confident AI provides a CallbackHandler that can be used to trace LangGraph agent’s execution.

Install the following packages:

pip install -U deepeval langgraph langchain langchain-openai

Login with your API key and configure DeepEval’s CallbackHandler as a callback for LangGraph:

main.py
import os import time from langgraph.prebuilt import create_react_agent from deepeval.integrations.langchain.callback import CallbackHandler import deepeval os.environ["OPENAI_API_KEY"] = "<your-openai-api-key>" deepeval.login_with_confident_api_key("<your-confident-api-key>") def get_weather(city: str) -> str: return f"It's always sunny in {city}!" agent = create_react_agent( model="openai:gpt-4o-mini", tools=[get_weather], prompt="You are a helpful assistant" ) result = agent.invoke( input = {"messages": [{"role": "user", "content": "what is the weather in sf"}]}, config = {"callbacks": [CallbackHandler()]} ) time.sleep(5) # Wait for the trace to be published

Run your agent by executing the script:

python main.py

You can directly view the traces in the Observatory by clicking on the link in the output printed in the console.

💡

DeepEval’s CallbackHandler is an implementation of LangChain’s BaseCallbackHandler.

Last updated on