LiteLLM
LiteLLM is a tool that makes it easy for developers to connect to and use many different large language models (LLMs)—like those from OpenAI, Anthropic, Hugging Face, and more—through a single, simple interface.
Quickstart
Confident AI integrates with LiteLLM to trace your LLM calls for both Proxy and SDK in the Observatory.
Setup via SDK
Install the LiteLLM SDK:
pip install litellm
Use litellm.success_callback
and litellm.failure_callback
to trace your LLM calls:
import os
import time
import litellm
os.environ['OPENAI_API_KEY']='<your-openai-api-key>'
os.environ['CONFIDENT_API_KEY']='<your-confident-api-key>'
litellm.success_callback = ["deepeval"]
litellm.failure_callback = ["deepeval"]
try:
response = litellm.completion(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": "What's the weather like in San Francisco?"}
],
)
except Exception as e:
print(e)
print(response)
Setup via Proxy
Add deepeval to the success_callback
and failure_callback
in the config.yaml
file.
model_list:
- model_name: gpt-4o
litellm_params:
model: gpt-4o
litellm_settings:
success_callback: ["deepeval"]
failure_callback: ["deepeval"]
Set your environment variables in .env
file.
OPENAI_API_KEY=<your-openai-api-key>
CONFIDENT_API_KEY=<your-confident-api-key>
Start your proxy server:
litellm --config config.yaml --debug
Make a request to the proxy server:
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "system",
"content": "You are a helpful math tutor. Guide the user through the solution step by step."
},
{
"role": "user",
"content": "how can I solve 8x + 7 = -23"
}
]
}'
There are two ways to start the LiteLLM proxy server from CLI i.e., either using pip package or docker container. We have used the pip package in the example above. Refer to the LiteLLM documentation for more information.