OpenAI
This tutorial will show you how to trace your OpenAI API calls on Confident AI Observatory.
Quickstart
Install the following packages:
pip install -U deepeval openai
Login using your API key on Confident AI in the CLI:
deepeval login --confident-api-key YOUR_API_KEY
Trace your OpenAI API calls:
import time
from openai import OpenAI
from deepeval.tracing import observe
client = OpenAI(api_key="<your-openai-api-key>")
@observe(type="llm", client=client)
def generate_response(input: str) -> str:
response = client.chat.completions.create(
model="gpt-4o-mini", # or your preferred model
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": input},
],
temperature=0.7,
)
return response
try:
response = generate_response("What is the weather in Tokyo?")
print(response)
except Exception as e:
raise e
time.sleep(6)
The above code will automatically capture the following information and send it to Observatory (no need to set the values of LlmAttributes
):
model
: Name of the OpenAI modelinput
: Input messagesoutput
: Output content (i.e.,response.choices[0].message.content
)input_token_count
: Input token countoutput_token_count
: Output token count
💡
Read more about the LLM spans and its attributes here .
We use Monkey Patching under the hood which dynamically wraps chat.completions.create
and beta.chat.completions.parse
methods of OpenAI client at runtime, preserving the original method signature.
Last updated on